Dust Suppression Hoppers Reduce Airborne Respirable Dust During Bulk Loading

Jay Colinet, Andy Cecala, Jim Noll - NIOSH
Jamie Robinson – Unimin Corporation
Presentation outline

• background

• dust suppression hopper (DSH)

• case study #1 - NIOSH
 – test conditions
 – sampling protocol
 – results

• case study #2 – Jamie Robinson

• conclusions
Background

- preparing handbook with IMA-NA
- Chapter 7 – Bulk Loading
- DSH identified in literature search as potential control
 - New Zealand company
 - limited data from Australia
- US sand companies installed units
- conducted case studies to evaluate effectiveness
Dust suppression hopper

- designed to load product in a solid column
 - reduces air in product
 - minimize entrainment of dust
 - eliminates need to raise/lower loading spout
- hopper equipped with plug that prevents discharge until predefined quantity has accumulated
- springs or PLC used to control clearance for discharge

<table>
<thead>
<tr>
<th>Load-Out Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSH MODEL</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>DSH MINI</td>
</tr>
<tr>
<td>DSH 1</td>
</tr>
<tr>
<td>DSH 2</td>
</tr>
<tr>
<td>DSH 3</td>
</tr>
<tr>
<td>DSH 4</td>
</tr>
<tr>
<td>DSH 5</td>
</tr>
<tr>
<td>DSH 6</td>
</tr>
<tr>
<td>DSH 7</td>
</tr>
<tr>
<td>DSH 8</td>
</tr>
<tr>
<td>DSH 9</td>
</tr>
</tbody>
</table>
Case study # 1

- plant loads open-bed truck on an intermittent basis
- 2013 – sampled baseline conditions
- DSH and associated equipment then installed
- 2014 – sampled DSH on two occasions
- only fully loaded trucks were included in analysis
Sampling methodology

• quantify respirable dust generation; not exposures

• sampling packages located at four inside corners of bed

• gravimetric and instantaneous, light-scattering samplers

• samplers started just prior to loading and removed/stopped after each truck was loaded

• four locations combined to get average truck concentration
Sampling methodology

- Short term sampling – 4 to 16 minutes to load a truck
- Utilized one set of gravimetric filters per sampling day
- Close proximity to loading resulted in elevated dust concentrations
- Zeroed personal Data Ram (pDR) periodically
Data analysis

• pDR data adjusted with gravimetric/pDR ratio
 – ratio = (avg grav conc) ÷ pDR conc
 – ratio calculated for each sampling location for each day of sampling

• pDR data from 4 locations used to calculate average concentration for each truck loaded
Data analysis - baseline

- average loading time (alt) = 6.8 minutes
- truck loading times (tlt) varied from 3.8 to 14.2 minutes
- relationship between loading time and dust
- normalized dust concentrations = (tlt/alt) x truck concentration

```
y = 507.01x^{0.934}
R^2 = 0.5713
```
Normalized dust levels from baseline sampling

Average = 107.4 mg/m³
(95% CI: 87.6 - 127.1)
DSH installation

- multiple product silos used to load trucks
- added bucket elevator to feed material to DSH
- all silos fed into bucket elevator system
- more consistent but slower feed rate when compared to loading during baseline
DSH installation and operation
DSH sampling

• **July survey**
 - 11 trucks sampled
 - 13.5 minute average loading time
 - 13.2 mg/m³ average

• **August survey**
 - 11 trucks sampled
 - 13.8 minute average loading time
 - 12.0 mg/m³ average
Dust levels from baseline and DSH sampling

Baseline avg = 107.4 mg/m³ (95% CI: 87.6 - 127.1)
DSH avg = 12.6 mg/m³ (95% CI: 10.0 - 15.1)
Dust reduction = 88.3%
Case study # 2

- open-top trucks intermittently loaded throughout the day
- baseline readings taken few days prior to installation
- DSH installation took ~1 day
- two trucks sampled prior to install
- two trucks sampled post install
Sampling methodology

- quantify fugitive dust generation; not exposures
- Single direct-reading monitor (pDR) used, hung ~ 24 inches from column and ~8 inches below rim of trailer
- sampler started just prior to loading, lowered and removed/stopped after each truck was loaded
- single location
Data analysis

Figure 5 - Independently graphed data measuring Total Dust generated during open top truck loading before and after the installation of a DSH Hopper at the Ottawa, MN Plant using a pDR-1000.
Conclusions

- DSH reduced respirable dust liberation by
 - 88% case study #1
- DSH reduced Total Dust
 - 98% case study #2
- DSH operating without major maintenance problems
Conclusions

• DSH reduced respirable dust liberation by
 – 88% case study #1
• DSH reduced Total Dust
 – 98% case study #2
• DSH operating without major maintenance problems
Costs

- Ottawa, MN
- ~$20K for DSH
- The value of dust control that this technology potentially brings for the minerals industry speaks for itself.

Future Installations

- Utica, IL
- Marston, NC
- Oregon, IL
- Unimin and NIOSH hope to continue to evaluate the efficiency of the DSH systems with various field-installations.
Thank you!

Questions??

Jay Colinet
NIOSH
P.O. Box 18070
Pittsburgh, PA 15236
412-386-6825
jcolinet@cdc.gov

Jamie Robinson
Unimin Corporation
48 West Boscawen St.
Winchester, VA
540-678-1490
jrobinson@unimin.com

Disclaimer: The findings and conclusions in this presentation have not been formally disseminated by the National Institute for Occupational Safety and Health and should not be construed to represent any agency determination or policy. Mention of any commercial product does not imply endorsement.